Linear Discriminant Analysis (LDA)

Yang Xiaozhou March 18, 2020

Industrial Systems Engineering and Management, NUS

1. LDA

- 2. Reduced-rank LDA
- 3. Fisher's LDA
- 4. Flexible Discriminant Analysis

LDA

LDA is used as a tool for classification.

- Bankruptcy prediction: Edward Altman's 1968 model
- Face recognition: learnt features are called Fisher faces
- Biomedical studies: discriminate different stages of a disease
- and many more
- It has shown some really good results:
 - $\bullet\,$ Top 3 classifiers for 11 of the 22 datasets studied in the STATLOG ${\rm project}^1$

¹(Michie et al. 1994)

Consider a generic classification problem:

- K groups: G = 1, ..., K, each with a density $f_k(\mathbf{x})$ on \mathbb{R}^p .
- A discriminant rule divides the space into K disjoint regions $\mathbb{R}_1, \ldots, \mathbb{R}_K$ and

allocate **x** to Π_j if $\mathbf{x} \in \mathbb{R}_j$.

Consider a generic classification problem:

- K groups: G = 1, ..., K, each with a density $f_k(\mathbf{x})$ on \mathbb{R}^p .
- A discriminant rule divides the space into K disjoint regions $\mathbb{R}_1,\ldots,\mathbb{R}_K$ and

allocate **x** to Π_j if $\mathbf{x} \in \mathbb{R}_j$.

• Maximum likelihood rule:

allocate **x** to
$$\Pi_j$$
 if $j = \arg \max_i f_i(\mathbf{x})$,

• Bayesian rule with class priors π_1, \ldots, π_K :

allocate **x** to
$$\Pi_j$$
 if $j = \arg \max_i \pi_i f_i(\mathbf{x})$.

If we assume data comes from Gaussian distribution: $f_k(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mu_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \mu_k)}$

- Parameters are estimated using training data: $\hat{\pi}_k, \hat{\mu}_k, \hat{\Sigma}_k$.
- Looking at the log-likelihod:

allocate **x** to Π_j if $j = \arg \max_i \delta_i(\mathbf{x})$.

 $\delta_i(\mathbf{x}) = \log f_i(\mathbf{x}) + \log \pi_i$ is called discriminant function.

If we assume data comes from Gaussian distribution: $f_k(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}_k|^{1/2}} e^{-\frac{1}{2} (\mathbf{x} - \mu_k)^T \mathbf{\Sigma}_k^{-1} (\mathbf{x} - \mu_k)}$

- Parameters are estimated using training data: $\hat{\pi}_k, \hat{\mu}_k, \hat{\Sigma}_k$.
- Looking at the log-likelihod:

allocate **x** to Π_j if $j = \arg \max_i \delta_i(\mathbf{x})$.

 $\delta_i(\mathbf{x}) = \log f_i(\mathbf{x}) + \log \pi_i$ is called discriminant function.

Assume equal covariance among K classes: LDA

$$\delta_k(\mathbf{x}) = \mathbf{x}^T \Sigma^{-1} \mu_k - \frac{1}{2} \mu_k^T \Sigma^{-1} \mu_k + \log \pi_k$$

Without that assumption on class covariance: QDA.

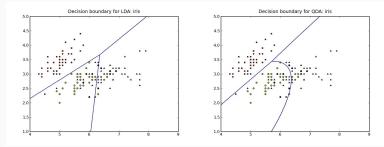
March 18, 2020

Decision boundary: LDA vs QDA

• Between any pair of classes k and ℓ , the decision boundary is:

$$\{\mathbf{x}:\delta_k(\mathbf{x})=\delta_\ell(\mathbf{x})\}$$

• LDA: linear boundary; QDA: quadratic boundary.



- Number of parameters to estimate rises quickly in QDA:
 - LDA: (*K* − 1)(*p* + 1)
 - QDA: $(K-1)\{p(p+3)/2+1\}$

March 18, 2020

Reduced-rank LDA

Reduced-rank LDA

Computation for LDA:

• Sphere the data:

$$\mathbf{x}^* \leftarrow \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \mathbf{x}$$

where $\hat{\boldsymbol{\Sigma}} = \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\mathcal{T}}$.

• Classify \boldsymbol{x} to the closest centroid in the transformed space:

$$\delta_k(\mathbf{x}^*) = \mathbf{x}^{*T} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\mu}_k + \log \pi_k \,.$$

Reduced-rank LDA

Computation for LDA:

• Sphere the data:

$$\mathbf{x}^* \leftarrow \mathbf{D}^{-\frac{1}{2}} \mathbf{U}^T \mathbf{x}$$
,

where $\hat{\boldsymbol{\Sigma}} = \boldsymbol{U} \boldsymbol{D} \boldsymbol{U}^{\mathcal{T}}$.

• Classify \boldsymbol{x} to the closest centroid in the transformed space:

$$\delta_k(\mathbf{x}^*) = \mathbf{x}^{*T} \hat{\mu}_k - \frac{1}{2} \hat{\mu}_k^T \hat{\mu}_k + \log \pi_k \,.$$

Inherent dimension reduction in LDA:

• K centroids lie in a subspace of dimension at most (K - 1):

$$H_{K-1} = \mu_1 \oplus \operatorname{span} \{\mu_i - \mu_1, 2 \le i \le K\}$$

- Classification is done by distance comparison in H_{K-1} .
 - $p \rightarrow K 1$ dimension reduction assuming p > K.

March 18, 2020

We can look for an even smaller subspace $H_L \subseteq H_{K-1}$:

• Rule: Class centroids of sphered data have maximum separation in this subspace in terms of variance.

We can look for an even smaller subspace $H_L \subseteq H_{K-1}$:

• Rule: Class centroids of sphered data have maximum separation in this subspace in terms of variance.

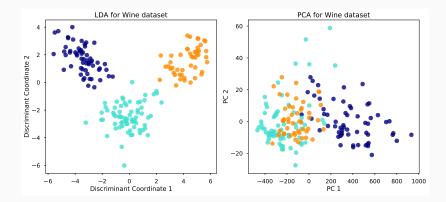
PCA on class centroids to find coordinates of H_L .

- 1. Find class mean and pooled var-cov: $\boldsymbol{\mathsf{M}}, \boldsymbol{\mathsf{W}}.$
- 2. Sphere the centroids: $\mathbf{M}^* = \mathbf{M}\mathbf{W}^{-\frac{1}{2}}$.
- 3. Obtain eigenvectors (\mathbf{v}_{ℓ}^*) in \mathbf{V}^* of $\operatorname{cov}(\mathbf{M}^*) = \mathbf{V}^* \mathbf{D}_{\mathbf{B}} \mathbf{V}^{*T}$.
- 4. Obtain new (discriminant) variables $Z_{\ell} = (\mathbf{W}^{-\frac{1}{2}} \mathbf{v}_{\ell}^*)^T X$, $\ell = 1, \dots, L$.

Dimension reduction: $\mathbf{X}_{N \times p} \rightarrow \mathbf{Z}_{N \times L}$.

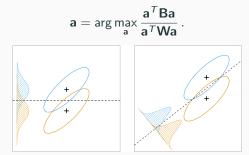
March 18, 2020

Wine dataset: 13 variables to distinguish three types of wines.



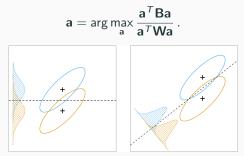
The previous rule is proposed by Fisher:

• Find a linear combination $Z = \mathbf{a}^T X$ that has maximum between-class variance relative to its within-class variance:



The previous rule is proposed by Fisher:

• Find a linear combination $Z = \mathbf{a}^T X$ that has maximum between-class variance relative to its within-class variance:

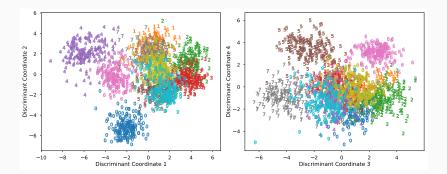


- The optimization is solved by a generalized eigenvalue problem: $\mathbf{W}^{-1}\mathbf{B}\mathbf{a} = \lambda \mathbf{a}.$
- Eigenvectors (a_{ℓ}) of $W^{-1}B$ are the same as $(W^{-\frac{1}{2}}v_{\ell}^*)$. Fisher arrives at this without Gaussian assumption.

March 18, 2020

Digit dataset: 64 variables to distinguish 10 written digits.

- Top 4 of Fisher's discriminant variables are shown.
- For example, coordinate 1 contrasts 4's and 2/3's.



Virtues of LDA:

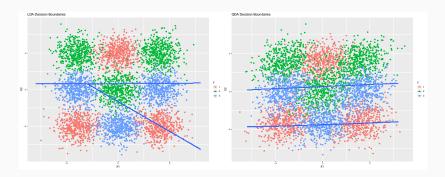
- 1. Simple prototype classifier: simple to interpret.
- 2. Decision boundary is linear: simple to describe and implement.
- 3. Dimension reduction: provides informative low-dimensional view on data.

Shortcomings of LDA:

- 1. Linear decision boundaries may not adequately separate the classes. Support for more general boundaries is desired.
- 2. In high-dimensional setting, LDA uses too many parameters. Regularized version of LDA is desired.

Flexible Discriminant Analysis

Flexible discriminant analysis (FDA) can tackle the first shortcoming.



Idea: Recast LDA as a regression problem, apply the same techniques generalizing linear regression.

We can recast LDA as a regression problem via optimal scoring. Set up:

- Response G falls into one of K classes, $\mathcal{G} = \{1, \dots, K\}$.
- X is the p-dimensional feature vector.

Suppose a scoring function:

$$heta:\mathcal{G}\mapsto\mathbb{R}^1$$

such that scores are optimally predicted by regressing on X, e.g. a linear map $\eta(X) = X^T \beta$.

We can recast LDA as a regression problem via optimal scoring. Set up:

- Response G falls into one of K classes, $\mathcal{G} = \{1, \dots, K\}$.
- X is the p-dimensional feature vector.

Suppose a scoring function:

$$heta:\mathcal{G}\mapsto\mathbb{R}^1$$

such that scores are optimally predicted by regressing on X, e.g. a linear map $\eta(X) = X^T \beta$.

In general, select $L \le K - 1$ such scoring functions and find the optimal {score, linear map} pairs that minimize:

$$ASR = \frac{1}{N} \sum_{\ell=1}^{L} \left[\sum_{i=1}^{N} \left(\theta_{\ell} \left(g_{i} \right) - \mathbf{x}_{i}^{T} \boldsymbol{\beta}_{\ell} \right)^{2} \right]$$

Procedures of LDA via optimal scoring:

- 1. Initialize. Build response indicator matrix $\mathbf{Y}_{N \times K}$ where $\mathbf{Y}_{ij} = 1$ if *i*th samples comes from *j*th class, and 0 otherwise.
- 2. Multivariate regression. Regress **Y** on **X** using *ASR* to get P_X where $\hat{\mathbf{Y}} = P_X \mathbf{Y}$, and regression coefficients **B**.
- 3. **Optimal scores.** Obtain the L largest eigenvectors $\boldsymbol{\Theta}$ of $\mathbf{Y}^T \mathbf{P}_X \mathbf{Y}$.
- 4. Update. Update the coefficients: $\textbf{B} \leftarrow \textbf{B} \Theta$

Procedures of LDA via optimal scoring:

- 1. Initialize. Build response indicator matrix $\mathbf{Y}_{N \times K}$ where $\mathbf{Y}_{ij} = 1$ if *i*th samples comes from *j*th class, and 0 otherwise.
- 2. Multivariate regression. Regress **Y** on **X** using *ASR* to get P_X where $\hat{\mathbf{Y}} = P_X \mathbf{Y}$, and regression coefficients **B**.
- 3. **Optimal scores.** Obtain the L largest eigenvectors $\boldsymbol{\Theta}$ of $\mathbf{Y}^T \mathbf{P}_X \mathbf{Y}$.
- 4. **Update.** Update the coefficients: $\mathbf{B} \leftarrow \mathbf{B} \mathbf{\Theta}$
- The optimal linear map is: $\eta(X) = \mathbf{B}^T X$.
- Columns of **B**, $\beta_1, \ldots, \beta_\ell$, are the same as \mathbf{a}_ℓ 's in LDA up to a constant.

This equivalence with regression problem provides a starting point for generalizing LDA to a more flexible and nonparametric version.

From LDA to FDA

Extend LDA by generalizing the linear map:

$$\eta(X) = \mathbf{B}^T X$$

to

$$\eta(X) = \mathbf{B}^T h(X).$$

- Generalized additive fits
- Spline functions
- MARS models
- Projection pursuits
- Neural networks

The idea behind FDA: LDA in an enlarged space.

March 18, 2020

The procedures of FDA is the same as LDA via optimal scoring with one change:

• Replace \mathbf{P}_X with $\mathbf{S}_{h(X)}$, the nonparametric regression operator.

Initialize \rightarrow Multivariate regression \rightarrow Optimal scores \rightarrow Update.

The procedures of FDA is the same as LDA via optimal scoring with one change:

• Replace \mathbf{P}_X with $\mathbf{S}_{h(X)}$, the nonparametric regression operator.

Initialize \rightarrow Multivariate regression \rightarrow Optimal scores \rightarrow Update.

- Optimal fit: $\eta(X)$.
- Fitted class centroids: $\overline{\eta}^{k} = \sum_{g_{i}=k} \eta\left(\mathbf{x}_{i}\right) / \boldsymbol{N}_{k}.$

A new observation X is classified to class k that minimizes:

$$\delta(\mathbf{x},k) = \left\| \mathbf{D} \left(\boldsymbol{\eta}(\mathbf{x}) - \overline{\boldsymbol{\eta}}^j \right) \right\|^2$$

where \mathbf{D} is the constant factor linking optimal fits and LDA coordinates.

LDA vs FDA

Data: three classes with mixture Gaussian densities.

FDA uses an additive model using smoothing splines of the form:



- 1. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- Hastie, T., Tibshirani, R., & Buja, A. (1994). Flexible discriminant analysis by optimal scoring. Journal of the American statistical association, 89(428), 1255-1270.
- 3. Hastie, T., Tibshirani, R., & Buja, A. (1995). Flexible discriminant and mixture models.
- Mardia, K. V., Kent, J. T., & Bibby, J. M. Multivariate analysis. 1979. Probability and mathematical statistics. Academic Press Inc.

Questions?

Contact: xiaozhou.yang@u.nus.edu