
Linear Discriminant Analysis (LDA)

Yang Xiaozhou

March 18, 2020

Industrial Systems Engineering and Management, NUS



Table of contents

1. LDA

2. Reduced-rank LDA

3. Fisher’s LDA

4. Flexible Discriminant Analysis

March 18, 2020 1



LDA



LDA and its applications

LDA is used as a tool for classification.

• Bankruptcy prediction: Edward Altman’s 1968 model

• Face recognition: learnt features are called Fisher faces

• Biomedical studies: discriminate different stages of a disease

• and many more

It has shown some really good results:

• Top 3 classifiers for 11 of the 22 datasets studied in the STATLOG

project1

1(Michie et al. 1994)
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Classification by discriminant analysis

Consider a generic classification problem:

• K groups: G = 1, . . . ,K , each with a density fk(x) on Rp.

• A discriminant rule divides the space into K disjoint regions

R1, . . . ,RK and

allocate x to Πj if x ∈ Rj .

• Maximum likelihood rule:

allocate x to Πj if j = arg max
i

fi (x) ,

• Bayesian rule with class priors π1, . . . , πK :

allocate x to Πj if j = arg max
i
πi fi (x) .
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Gaussian as class density

If we assume data comes from Gaussian distribution:

fk(x) = 1
(2π)p/2|Σk |1/2

e−
1
2 (x−µk )

T Σ−1
k (x−µk )

• Parameters are estimated using training data: π̂k , µ̂k , Σ̂k .

• Looking at the log-likelihod:

allocate x to Πj if j = arg max
i
δi (x) .

δi (x) = log fi (x) + log πi is called discriminant function.

Assume equal covariance among K classes: LDA

δk(x) = xTΣ−1µk −
1

2
µT
k Σ−1µk + log πk

Without that assumption on class covariance: QDA.
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Decision boundary: LDA vs QDA

• Between any pair of classes k and `, the decision boundary is:

{x : δk(x) = δ`(x)}

• LDA: linear boundary; QDA: quadratic boundary.

• Number of parameters to estimate rises quickly in QDA:

• LDA: (K − 1)(p + 1)

• QDA: (K − 1){p(p + 3)/2 + 1}
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Reduced-rank LDA

Computation for LDA:

• Sphere the data:

x∗ ← D−
1
2 UTx ,

where Σ̂ = UDUT .

• Classify x to the closest centroid in the transformed space:

δk(x∗) = x∗T µ̂k −
1

2
µ̂T
k µ̂k + log πk .

Inherent dimension reduction in LDA:

• K centroids lie in a subspace of dimension at most (K − 1):

HK−1 = µ1 ⊕ span {µi − µ1, 2 ≤ i ≤ K}

• Classification is done by distance comparison in HK−1.

• p → K − 1 dimension reduction assuming p > K .
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Reduced-rank LDA

We can look for an even smaller subspace HL ⊆ HK−1:

• Rule: Class centroids of sphered data have maximum separation in

this subspace in terms of variance.

PCA on class centroids to find coordinates of HL.

1. Find class mean and pooled var-cov: M,W.

2. Sphere the centroids: M∗ = MW−
1
2 .

3. Obtain eigenvectors (v∗` ) in V∗ of cov(M∗) = V∗DBV∗T .

4. Obtain new (discriminant) variables Z` = (W−
1
2 v∗` )TX , ` = 1, . . . , L.

Dimension reduction: XN×p → ZN×L.
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Reduced-rank LDA vs PCA

Wine dataset: 13 variables to distinguish three types of wines.
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Fisher’s LDA

The previous rule is proposed by Fisher:

• Find a linear combination Z = aTX that has maximum

between-class variance relative to its within-class variance:

a = arg max
a

aTBa

aTWa
.

• The optimization is solved by a generalized eigenvalue problem:

W−1Ba = λa.

• Eigenvectors (a`) of W−1B are the same as (W−
1
2 v∗` ). Fisher

arrives at this without Gaussian assumption.
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Fisher’s LDA

Digit dataset: 64 variables to distinguish 10 written digits.

• Top 4 of Fisher’s discriminant variables are shown.

• For example, coordinate 1 contrasts 4’s and 2/3’s.
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Summary of LDA

Virtues of LDA:

1. Simple prototype classifier: simple to interpret.

2. Decision boundary is linear: simple to describe and implement.

3. Dimension reduction: provides informative low-dimensional view on

data.

Shortcomings of LDA:

1. Linear decision boundaries may not adequately separate the classes.

Support for more general boundaries is desired.

2. In high-dimensional setting, LDA uses too many parameters.

Regularized version of LDA is desired.
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Beyond linear boundaries: FDA

Flexible discriminant analysis (FDA) can tackle the first shortcoming.
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Idea: Recast LDA as a regression problem, apply the same techniques

generalizing linear regression.
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LDA as a regression problem

We can recast LDA as a regression problem via optimal scoring.

Set up:

• Response G falls into one of K classes, G = {1, . . . ,K}.
• X is the p-dimensional feature vector.

Suppose a scoring function:

θ : G 7→ R1

such that scores are optimally predicted by regressing on X , e.g. a linear

map η(X ) = XTβ.

In general, select L ≤ K − 1 such scoring functions and find the optimal

{score, linear map} pairs that minimize:

ASR =
1

N

L∑
`=1

[
N∑
i=1

(
θ` (gi )− xT

i β`
)2]
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LDA via optimal scoring

Procedures of LDA via optimal scoring:

1. Initialize. Build response indicator matrix YN×K where Yij = 1 if

ith samples comes from jth class, and 0 otherwise.

2. Multivariate regression. Regress Y on X using ASR to get PX

where Ŷ = PXY, and regression coefficients B.

3. Optimal scores. Obtain the L largest eigenvectors Θ of YTPXY.

4. Update. Update the coefficients: B← BΘ

• The optimal linear map is: η(X ) = BTX .

• Columns of B, β1, . . . ,β`, are the same as a`’s in LDA up to a

constant.

This equivalence with regression problem provides a starting point for

generalizing LDA to a more flexible and nonparametric version.
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From LDA to FDA

Extend LDA by generalizing the linear map:

η(X ) = BTX

to

η(X ) = BTh(X ).

• Generalized additive fits

• Spline functions

• MARS models

• Projection pursuits

• Neural networks

The idea behind FDA: LDA in an enlarged space.
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FDA via optimal scoring

The procedures of FDA is the same as LDA via optimal scoring with one

change:

• Replace PX with Sh(X ), the nonparametric regression operator.

Initialize → Multivariate regression → Optimal scores → Update.

• Optimal fit: η(X).

• Fitted class centroids: ηk =
∑

gi=k η (xi ) /Nk .

A new observation X is classified to class k that minimizes:

δ(x, k) =
∥∥D
(
η(x)− ηj

)∥∥2
where D is the constant factor linking optimal fits and LDA coordinates.
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LDA vs FDA

Data: three classes with mixture Gaussian densities.

FDA uses an additive model using smoothing splines of the form:

α +

p∑
1

fj (Xj)
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Questions?

Contact: xiaozhou.yang@u.nus.edu
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