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LDA and its applications

LDA is used as a tool for classification.

Bankruptcy prediction: Edward Altman’s 1968 model

e Face recognition: learnt features are called Fisher faces
e Biomedical studies: discriminate different stages of a disease

e and many more

It has shown some really good results:

e Top 3 classifiers for 11 of the 22 datasets studied in the STATLOG

project!

L(Michie et al. 1994)
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Classification by discriminant analysis

Consider a generic classification problem:

e K groups: G =1,...,K, each with a density fx(x) on RP.

e A discriminant rule divides the space into K disjoint regions
Ry,..., Rk and
allocate x to IM; if x € R; .
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Classification by discriminant analysis

Consider a generic classification problem:

e K groups: G =1,...,K, each with a density fx(x) on RP.

e A discriminant rule divides the space into K disjoint regions
Ry,..., Rk and
allocate x to I; if x € R; .
e Maximum likelihood rule:
allocate x to I} if j = arg max fi(x),
1
e Bayesian rule with class priors 7y, ..., 7Tk:

allocate x to M; if j = arg max m;f;(x) .
1
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Gaussian as class density

If we assume data comes from Gaussian distribution:

fk(x) = (27r)P/21|Zk\1/2 e—%(x—uk)TZ;l(x—uk)

e Parameters are estimated using training data: 7y, fix, ) 38

e Looking at the log-likelihod:
allocate x to M} if j = arg max d;(x) .

9i(x) = log fi(x) + log 7; is called discriminant function.
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Gaussian as class density

If we assume data comes from Gaussian distribution:

fk(x) = (27r)P/21|Zk\1/2 e—%(x—uk)TZ;l(x—uk)

e Parameters are estimated using training data: 7y, fix, ) 38

e Looking at the log-likelihod:
allocate x to I; if j = arg mlaxé,-(x).
9i(x) = log fi(x) + log 7; is called discriminant function.
Assume equal covariance among K classes: LDA
k(%) =xTZ e — E/U'k fX Yy + log i
Without that assumption on class covariance: QDA.
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Decision boundary: LDA vs QDA

e Between any pair of classes k and ¢, the decision boundary is:

{x: 0k(x) = de(x)}
e LDA: linear boundary; QDA: quadratic boundary.

Decision boundary for LDA: iris Decision boundary for QDA: iris

e Number of parameters to estimate rises quickly in QDA:
e LDA: (K-1)(p+1)
e QDA: (K —1){p(p +3)/2+ 1}
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Reduced-rank LDA

Computation for LDA:

e Sphere the data:
x* < D 2UTx

3

where ¥ = UDU.

e Classify x to the closest centroid in the transformed space:

«Ta Llor.
k(x") = x Tﬂk*EMkTHk+|0g7Tk-
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Reduced-rank LDA

Computation for LDA:

e Sphere the data:
x* < D 2UTx

3

where ¥ = UDUT.
e Classify x to the closest centroid in the transformed space:
* *T A 1 AT A
Ok(x*) =x" " ik — Eﬂkﬂk + log 7y .
Inherent dimension reduction in LDA:
e K centroids lie in a subspace of dimension at most (K — 1):
Hk—1 = p1 ®span{pj — p1,2 < i < K}

e Classification is done by distance comparison in Hyx_1.

e p — K — 1 dimension reduction assuming p > K.
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Reduced-rank LDA

We can look for an even smaller subspace H; C Hyk_1:

e Rule: Class centroids of sphered data have maximum separation in
this subspace in terms of variance.
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Reduced-rank LDA

We can look for an even smaller subspace H; C Hyk_1:

e Rule: Class centroids of sphered data have maximum separation in
this subspace in terms of variance.

PCA on class centroids to find coordinates of H;.

1. Find class mean and pooled var-cov: M, W.

2. Sphere the centroids: M* = MWz,

3. Obtain eigenvectors (v}) in V* of cov(M*) = V*DgV*".

4. Obtain new (discriminant) variables Z, = (W=2v})TX, £ =1,...,L.

Dimension reduction: Xyxp —+ ZyxL.
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Reduced-rank LDA vs PCA

Wine dataset: 13 variables to distinguish three types of wines.

LDA for Wine dataset PCA for Wine dataset
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The previous rule is proposed by Fisher:

e Find a linear combination Z = a’ X that has maximum
between-class variance relative to its within-class variance:
a’Ba

a=argmax ——.
S a’Wa

March 18, 2020 9



The previous rule is proposed by Fisher:

e Find a linear combination Z = a’ X that has maximum
between-class variance relative to its within-class variance:
a’Ba

a—=—argmax ———.
M T Wa

e The optimization is solved by a generalized eigenvalue problem:
W~1Ba = )a.
e Eigenvectors (a;) of W—!B are the same as (W~2v}). Fisher
arrives at this without Gaussian assumption.
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Fisher’s LDA

Digit dataset: 64 variables to distinguish 10 written digits.

e Top 4 of Fisher's discriminant variables are shown.

e For example, coordinate 1 contrasts 4's and 2/3's.
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Summary of LDA

Virtues of LDA:

1. Simple prototype classifier: simple to interpret.
2. Decision boundary is linear: simple to describe and implement.
3. Dimension reduction: provides informative low-dimensional view on
data.
Shortcomings of LDA:

1. Linear decision boundaries may not adequately separate the classes.
Support for more general boundaries is desired.

2. In high-dimensional setting, LDA uses too many parameters.
Regularized version of LDA is desired.
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Beyond linear boundaries: FDA

Flexible discriminant analysis (FDA) can tackle the first shortcoming.

LDA Decision Boundaries QDA Decision Boundaries

I

Idea: Recast LDA as a regression problem, apply the same techniques
generalizing linear regression.
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LDA as a regression problem

We can recast LDA as a regression problem via optimal scoring.
Set up:

e Response G falls into one of K classes, G = {1,...,K}.
e X is the p-dimensional feature vector.

Suppose a scoring function:
6:G— R

such that scores are optimally predicted by regressing on X, e.g. a linear
map n(X) = XT8.
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LDA as a regression problem

We can recast LDA as a regression problem via optimal scoring.

Set up:

e Response G falls into one of K classes, G = {1,...,K}.
e X is the p-dimensional feature vector.

Suppose a scoring function:
6:G— R

such that scores are optimally predicted by regressing on X, e.g. a linear
map n(X) = XT8.

In general, select L < K — 1 such scoring functions and find the optimal
{score, linear map} pairs that minimize:

L
ASR_lz Ze; g)—xIB,)°
1 Li=1

=
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LDA via optimal scoring

Procedures of LDA via optimal scoring:

1. Initialize. Build response indicator matrix Yy x where Y;; = 1 if
ith samples comes from jth class, and 0 otherwise.

2. Multivariate regression. Regress Y on X using ASR to get Px
where Y = PxY, and regression coefficients B.

3. Optimal scores. Obtain the L largest eigenvectors @ of Y PxY.
4. Update. Update the coefficients: B «+ BO
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LDA via optimal scoring

Procedures of LDA via optimal scoring:

1. Initialize. Build response indicator matrix Yy x where Y;; = 1 if
ith samples comes from jth class, and 0 otherwise.

2. Multivariate regression. Regress Y on X using ASR to get Px
where Y = PxY, and regression coefficients B.

3. Optimal scores. Obtain the L largest eigenvectors @ of Y PxY.
4. Update. Update the coefficients: B «+ BO

e The optimal linear map is: n(X) =BT X.
e Columns of B, B;,...,3,, are the same as a,;'s in LDA up to a

constant.

This equivalence with regression problem provides a starting point for
generalizing LDA to a more flexible and nonparametric version.
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From LDA to FDA

Extend LDA by generalizing the linear map:
n(X)=BTX

to
n(X) = BT h(X).

Generalized additive fits

Spline functions
e MARS models
e Projection pursuits

e Neural networks
The idea behind FDA: LDA in an enlarged space.
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FDA via optimal scoring

The procedures of FDA is the same as LDA via optimal scoring with one
change:

e Replace Px with Sp(x), the nonparametric regression operator.

Initialize — Multivariate regression — Optimal scores — Update.
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FDA via optimal scoring

The procedures of FDA is the same as LDA via optimal scoring with one
change:

e Replace Px with Sp(x), the nonparametric regression operator.

Initialize — Multivariate regression — Optimal scores — Update.

e Optimal fit: n(X).
e Fitted class centroids: 7" = > g=k M (xi) /Ni.

A new observation X is classified to class k that minimizes:

3(x, k) = [|D (n(x) - 7)

I
where D is the constant factor linking optimal fits and LDA coordinates.
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LDA vs FDA

Data: three classes with mixture Gaussian densities.

FDA uses an additive model using smoothing splines of the form:
P
at) f(X)
1

LDA Decision Boundaries FDA Decision Boundaries
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Questions?

Contact: xiaozhou.yang@u.nus.edu
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